一次函数教案

时间:2026-02-20 22:08:06
一次函数教案

一次函数教案

作为一名无私奉献的老师,编写教案是必不可少的,借助教案可以让教学工作更科学化。写教案需要注意哪些格式呢?下面是小编为大家整理的一次函数教案,欢迎大家借鉴与参考,希望对大家有所帮助。

一次函数教案1

一、创设情境

问题画出函数y=的图象,根据图象,指出:

(1)x取什么值时,函数值y等于零?

(2)x取什么值时,函数值y始终大于零?

二、探究归纳

问一元一次方程=0的解与函数y=的图象有什么关系?

答一元一次方程=0的解就是函数y=的图象上当y=0时的x的值.

问一元一次方程=0的解,不等式>0的解集与函数y=的图象有什么关系?

答不等式>0的解集就是直线y=在x轴上方部分的'x的取值范围.

三、实践应用

例1画出函数y=-x-2的图象,根据图象,指出:

(1)x取什么值时,函数值y等于零?

(2)x取什么值时,函数值y始终大于零?

解过(-2,0),(0,-2)作直线,如图.

(1)当x=-2时,y=0;

(2)当x<-2时,y>0.

例2利用图象解不等式(1)2x-5>-x+1,(2)2x-5<-x+1.

解设y1=2x-5,y2=-x+1,

在直角坐标系中画出这两条直线,如下图所示.

两条直线的交点坐标是(2,-1),由图可知:

(1)2x-5>-x+1的解集是y1>y2时x的取值范围,为x>-2;

(2)2x-5<-x+1的解集是y1<y2时x的取值范围,为x<-2.

四、交流反思

运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.

五、检测反馈

1.已知函数y=4x-3.当x取何值时,函数的图象在第四象限?

2.画出函数y=3x-6的图象,根据图象,指出:

(1)x取什么值时,函数值y等于零?

(2)x取什么值时,函数值y大于零?

(3)x取什么值时,函数值y小于零?

3.画出函数y=-0.5x-1的图象,根据图象?

一次函数教案2

一、教材的地位和作用

本节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会两点法的简便,向学生渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一次函数性质作准备。

(一)教学目标的确定

教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。

1、知识目标

(1)能用两点法画出一次函数的图象。

(2)结合图象,理解直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响。

2、能力目标

(1)通过操作、观察,培养学生动手和归纳的能力。

(2)结合具体情境向学生渗透数形结合的数学思想。

3、情感目标

(1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。

(2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。

(二)教学重点、难点

用两点法画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响,是本节课的难点。关键是通过学生的直观感知、动手操作、合作交流归纳其规律。

二、学情分析

1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合两点确定一条直线,学生能画出一次函数图象。

2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。

3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

三、教学方法

我采用自主探究合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。

  四、教学设计

一、设疑,导入新课(2分钟)

师:同学们,上节课我们学习了一次函数,你能说一说什么样的函数是一次函数吗?

生1:函数的解析式都是用自变量的一次整式表示的,我们称这样的函数为一次函数。

生2:一次函数通常可以表示为y=kx+b的形式,其中k、b为常数,k0。

生3:正比例函数也是一次函数。

师:(同学们回答的都很好)通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢?

这节课让我们一起来研究 一次函数的图象。(板书)

二、自主探究小组交流、归纳问题升华:

1、师:问(1)你们知道一次函数是什么形状吗?(4分钟)

生:不知道。

师:那就让我们一起做一做,看一看:(出示幻灯片)

用描点法作出下列一次函数的图象。

(1) y= 0.5x (2) y= 0.5x+2

(3) y= 3x (4) y= 3x + 2

师:(为了节约时间)要求:用描点法时,最少5个点;以小组为单位,由小组长分配,每人画一个图象。画完后,小组订正,看是否画的正确?

然后讨论解决问题(1):观察你和你的同伴画出的图象,你认为一次函数的图象是什么形状?

小组汇报:一次函数的图象是直线。

师:所有的一次函数图象都是直线吗?

生:是。

师:那么一次函数y=kx+b(其中k、b为常数,k0),也可以称为直线y=kx+b(其中k、b为常数,k0)。(板书)

师:(出示幻灯片)问(2):观察你和你的同伴所画的图象在位置上有没有不同之处?(2分钟)

讨论正比例函数的图象与一般的一次函数图象在位置上有没有不同之处。

小组1:正比 ……此处隐藏14818个字……

b──c15(240—x)b──d24(60+x)

若总运输费用为y的话,y与x关系为:y=20x+25(200—x)+15(240—x)+24(60+x).

化简得:

y=40x+10040(0≤x≤200).

由解析式或图象都可看出,当x=0时,y值最小,为10040.

因此,从a城运往c乡0吨,运往d乡200吨;从b城运往c乡240吨,运往d乡60吨.此时总运费最少,为10040元.

若a城有肥料300吨,b城200吨,其他条件不变,又该怎样调运呢?

解题方法与思路不变,只是过程有所不同:

a──cx吨

a──d300—x吨

b──c240—x吨

b──dx—40吨

反映总运费y与x的函数关系式为:

y=20x+25(300—x)+15(240—x)+24(x—40).

化简:y=4x+10140(40≤x≤300).

由解析式可知:当x=40时y值最小为:y=4×40+10140=10300因此从a城运往c乡40吨,运往d乡260吨;从b城运往c乡200吨,运往d乡0吨.此时总运费最小值为10300吨.

如何确定自变量x的取值范围是40≤x≤300的呢?

由于b城运往d乡代数式为x—40吨,实际运费中不可能是负数,而且a城中只有300吨肥料,也不可能超过300吨,所以x取值应在40吨到300吨之间.

总结:解决含有多个变量的问题时,可以分析这些变量间的关系,选取其中某个变量作为自变量,然后根据问题条件寻求可以反映实际问题的函数.这样就可以利用函数知识来解决了.

在解决实际问题过程中,要注意根据实际情况确定自变量取值范围.就像刚才那个变形题一样,如果自变量取值范围弄错了,很容易出现失误,得到错误的结论.

ⅲ练习

从a、b两水库向甲、乙两地调水,其中甲地需水15万吨,乙地需水13万吨,a、b两水库各可调出水14万吨.从a地到甲地50千米,到乙地30千米;从b地到甲地60千米,到乙地45千米.设计一个调运方案使水的调运量(万吨·千米)最少.

解答:设总调运量为y万吨·千米,a水库调往甲地水x万吨,则调往乙地(14—x)万吨,b水库调往甲地水(15—x)万吨,调往乙地水(x—1)万吨.

由调运量与各距离的关系,可知反映y与x之间的函数为:y=50x+30(14—x)+60(15—x)+45(x—1).

化简得:y=5x+1275(1≤x≤14).

由解析式可知:当x=1时,y值最小,为y=5×1+1275=1280.

因此从a水库调往甲地1万吨水,调往乙地13万吨水;从b水库调往甲地14万吨水,调往乙地0万吨水.此时调运量最小,调运量为1280万吨·千米.

ⅳ.小结

本节课我们学习并掌握了分段函数在实际问题中的应用,特别是学习了解决多个变量的函数问题,为我们以后解决实际问题开辟了一条坦途,使我们进一步认识到学习函数的重要性和必要性.

ⅴ.课后作业

习题11.2─7、9、11、12题.

一次函数教案15

教学目标

(一)教学知识点

1.学会用待定系数法确定一次函数解析式.

2.具体感知数形结合思想在一次函数中的应用

(二)能力训练目标

1.经历待定系数法应用过程,提高研究数学问题的技能.

2.体验数形结合,逐步学习利用这一思想分析解决问题.教学重点

待定系数法确定一次函数解析式.教学难点

灵活运用有关知识解决相关问题.

教学方法

归纳─总结教具准备

多媒体演示.

教学过程

1.提出问题,创设情境

我们前面学习了有关一次函数的一些知识,掌握了其解析式的特点及图象特征,并学会了已知解析式画出其图象的方法以及分析图象特征与解析式之间的联系规律.如果反过来,告诉我们有关一次函数图象的某些特征,能否确定解析式呢?

这将是我们这节课要解决的主要问题,大家可有兴趣?

ⅱ.导入新课

有这样一个问题,大家来分析思考,寻求解决的办法.[活动]活动设计内容:

已知一次函数图象过点(3,5)与(—4,—9),求这个一次函数的解析式.

联系以前所学知识,你能总结归纳出一次函数解析式与一次函数图象之间的转化规律吗?

活动设计意图:

通过活动掌握待定系数法在函数中的应用,进而经历思考分析,归纳总结一次函数解析式与图象之间转化规律,增强数形结合思想在函数中重要性的理解.

教师活动:

引导学生分析思考解决由图象到解析式转化的方法过程,从而总结归纳两者转化的一般方法.

学生活动:

在教师指导下经过独立思考,研究讨论顺利完成转化过程.概括阐述一次函数解析式与图象转化的一般过程.

活动过程及结论:

分析:求一次函数解析式,关键是求出k、b值.因为图象经过两个点,所以这两点坐标必适合解析式.由此可列出关于k、b的二元一次方程组,解之可得.

设这个一次函数解析式为y=kx+b.

3kb5因为y=k+b的图象过点(3,5)与(—4,—9),所以4kb9 k2解之,得b1,故这个一次函数解析式为y=2x—1。

结论:函数解析式选取满足条件的两定点画出一次函数的图象y=kx+b解出(x1,y1)与(x1,y2)选取直线l

像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.

练习:

1.已知一次函数y=kx+2,当x=5时y的值为4,求k值.

2.已知直线y=kx+b经过点(9,0)和点(24,20),求k、b值.

3.生物学家研究表明,某种蛇的长度y(cm)是其尾长x(cm)的一次函数,当蛇的'尾长为6cm时,蛇的长为45.5cm;当蛇的尾长为14cm时,蛇的长为105.5cm。当一条蛇的尾长为10 cm时,这条蛇的长度是多少?

4.教科书第35页第6题。解答:

1.当x=5时y值为4.即4=5k+2,∴k=509kb

2.由题意可知:20xxkb 4k3b12解之得,作业:教科书第35页第5,7题。

备选题:

1、已知一次函数y=3x—b的图象经过点p(1,1),则该函数图象必经过点( )

a、(—1,1)b。(2,2)c。(—2,2)d。(2,—2)

2、若一次函数y=2x+b的图像与坐标轴围成的三角形的面积是9,求b的值.

3、点m(—2,k)在直线y=2x+1上,求点m到x轴的距离d为多少?

《一次函数教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式