解决问题说课稿

时间:2025-12-14 07:32:06
解决问题说课稿

解决问题说课稿

作为一名教学工作者,编写说课稿是必不可少的,借助说课稿可以让教学工作更科学化。那么应当如何写说课稿呢?以下是小编收集整理的解决问题说课稿,希望对大家有所帮助。

解决问题说课稿1

今天我说课的内容是五年级下册第9单元解决问题的策略——倒推的第一课时。我想从下面几个方面来说课:

一、教材方面:

纵向看:《数学课程标准》在确定课程目标时特别提到了下面的要求。“形成解决问题的一些基本策略,体验解决问题策略多样性,发展实践能力和创新精神”。因此新编的苏教版国标本教材分六次安排了不同的解决问题的策略:有列表法、画图法、列举法、倒推法、替换法、转化法。这些策略既相互独立,一般都是在特定的问题情境下来解决特定的实际问题,同时他们又相互作用,比如倒推是解决问题的一种策略,运用时还需要其他策略相配合,尤其是四年级的列表整理条件和问题以及画图这些策略。

需要说明的是:解决问题的策略和解决问题的方法是不一样的。方法是可以教的,而策略则更注重学生自己去感悟!在教学中,应该着力引导学生感悟策略的价值,领会策略的真谛,不断提高对策略的本质认识。

横向看:本单元是在学生已经学习了画图和列表的策略基础上,教学用“倒过来推想”的策略解决问题。“倒过来推想”是一种应用于特定问题情境下的解题策略。我认为通过教学这部分内容更多的还是培养学生能够自觉的应用这种策略的意识,以达到不断丰富学生数学底蕴的目的。

教材首先通过两道例题让学生解决具体的问题,体会适合用“倒过来推想”的策略来解决的问题的特点,初步掌握运用这一策略解决问题的基本思考方法和过程;在接下来的练习中安排了不同的实际问题,让学生灵活运用学过的数学知识去解决,进一步体会“倒过来推想”这一策略的价值及其适用性,以提高学生解决实际问题的能力。

说教学目标、教学重难点:

根据课程标准和教学内容我认为这节课的教学要达到以下几个目标:

1、使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

2、使学生在对解决实际问题的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。

3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学生学好数学的信心。

教学重点:引导学生体验感受事物和数量的发展变化情况,从变化后的结果开始,

运用“倒推”的策略解决实际问题。

教学难点:知道什么情况下用“倒推”的策略解决问题,和怎样运用“倒推”的策略去解决问题。

二、说教学过程。

我的课堂教学过程主要分为四个部分:一、方法铺垫 二、探究新知 三、巩固运用 四、思维拓展

(一)方法铺垫:

首先请一名学生依次说说她上学时主要经过哪几个地点,再请另一名学生如果她原路返回到家,会经过哪几个地点?从而使学生初步体会“倒推”的.策略在生活中的价值,激起学生浓厚的学习兴趣。接着,出示练习十六中的第5题,让学生们尝试练习,因为这是学生们曾经练习过的形式,因此,虽然没有学习本课,但对于学生而言没有难度。

这样的设计从学生的可接受性入手,先带着学生进入学习的状态,从身边的事物开始,为后面知识的新授打下坚实的伏笔。

(二)探究新知:

在例1的讨论中,我着重从变与不变着手,“当甲杯倒入乙杯40毫升后,两杯果汁同样多”,这样一来,什么没变?什么变化了?是怎样变化的?引导学生分析得出,根据“现在两杯果汁各200毫升”,要想知道原来两杯的果汁容量,得把那40毫升倒还给甲杯;接下来,学生通过表格的填写反思“倒回去”的过程;通过课件的演示,丰富了对“倒推”的感性认识。

在例2的讨论中,首先让学生感到,这道题虽然与例1不同,但都要从现在的数量追溯到原来的数量;接着让学生用学过的方法简明扼要地将题目中的条件及问题呈现出来;然后启发学生逆着事情的变化顺序推想:送出的应要回,收集的应去掉。这样既降低了学习难度,有突出了倒推的思路。当然,为了鼓励学生富有个性的思考,发展学生的思维能力,这道题还可以有其他解法,教师要及时点评,同时可以将另一方法作为倒推结果的检验。

对于两个例题的学习,主要是让学生解决具体的问题,体会适用“倒推”的策略来解决的问题的特点,初步掌握运用这一策略解决实际问题的基本思考方法和过程。同时让学生认识到:倒推只是解决问题的一种策略,运用时还需要其他策略相配合,如:列表、摘录。

(三)巩固运用:

这个环节的题目主要来源于课本,对于课本中的练一练,我把主要力气花在指导学生体会数量变化的过程,即理解“一半多一张”。现场让学生拿一拿,送一送不失为一个好办法,学生在动手操作中,体会到要“先送一半,再送一张”。这样,这道题的难度大大被降低了,学生能很快地整理出事情从开始到结束的变化过程,排出各次变化的次序后再逆着事情的变化顺序推想出原来。

为了让学生彻底理解本道题,我紧随其后,将题目更改为“一半少一张”, 这样不仅可以巩固对新知的理解,而且对倒推有了更深的认识,达到了把课堂上学习的内容内化为自己的技能的目的。

“练习十六”的1、2两题让学生灵活运用学过的数学知识去解决,进一步体会“倒推”策略的意义及其适用性,提高解决问题的能力。

(四)思维拓展:

为了让学生运用自己所学得只是解决生活中的实际问题,同时让学生感受到这一策略在日常生活中的巨大作用,我设计了以下的思维拓展。

一是利用所学知识解决下面这个问题:一群青蛙幸福地生活在大池塘的一角,池塘的另一边是一片睡莲。一天,池塘里流进了一些刺激睡莲生长的化学污染物,它们可以让睡莲每天长大1倍。这对青蛙而言是个问题,一旦睡莲覆盖了整个池塘,他们将无处容身。如果睡莲可以在50天内覆盖整个池塘,第49天睡莲会覆盖池塘的多少呢?

二是生活中人们对倒推策略的思考:司马光救人是将“人如何离开水”变成“水如何能离开人”;破冰船是将如何让“从上往下施力”变成“从下往上施力”等等,这些都体现了倒推在生活中的应用。

三、说教学构思:

本节课的教学安排主要基于以下两方面进行思考的:

1、形成一种观念——多种策略的综合运用。

本节课,我注重培养学生应用策略的意识,对于小学生而言,在抽象思维还未完全形成的时候理解倒推策略有一定难度;同时在什么样的题目中运用倒推策略也是部分学生的困惑。因此,借助于已学策略——列表、摘录,甚至画图,都成为帮助我们倒推的工具,在这些策略的扶助下,才能进一步体现解决这类题目倒推策略的优越性。

2、突出一条 ……此处隐藏23919个字……学生的分析能力,发展学生思维。

(2)创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,合作交流。

(3)培养学生认真审题,仔细计算的好习惯。

3、情感与态度目标:渗透思想素质教育及丰富学生的基本常识,提高学生对数学学习的兴趣。

(三)、教学重难点:

“求一个数的几分之几是多少”,是具有特殊数量关系的问题,属于两个量相比的关系,帮助学生理解和掌握这类问题的基本思路,也就是如何根据分数乘法的意义、算理来解答自然成为本节课的重中之重,所以:

教学重点:分析应用题的数量关系,理解“求一个数的几分之几是多少”用乘法计算的算理

因为本节课涉及的这类数量关系比较特殊,找到两个相比较的量,关键是弄清哪个量是单位“1”,要求的量是单位“1”的几分之几,再根据分数乘法的意义解答。所以:

难点:正确找准单位“1”所对应的量

二、学情分析

六年级学生刚刚进入初中,年龄特点决定了他们对新事物有极强的好奇心,求知欲旺盛,主观能动性极易被调动,同学之间又善于合作和交流,本节的内容又建立在刚刚学过的分数乘法的基础上,所以在教学时,教师可以创设现实情景,提出数学问题,突出自主探索和合作学习,让学生在已有知识的基础上,自主建构新知识,理解算理,分析数量关系,寻找解决问题的思路。

三、教法学法及教学手段:

教师可以为学生创设一种问题背景下的探索活动,使学生在一种动态的探索过程中自己发现解题方法,从而体验成功的快乐,感受数学的思想方法。基于以上思考,以“自主学习”贯穿全课,引导学生迁移旧知、大胆尝试、质疑讨论、挑战闯关等,把“过程性目标”凸显出来,另外借助现代多媒体教学手段充分体现出新课标理念中数学感知的直观性原则,提高课堂容量,让学生在发现中体会到数学学习的其乐无穷,同时受到良好的国情教育。

四、教学流程:

根据本节教材内容的特点及学生的认知水平,我制定了以下六个教学环节:

(一)、复习质疑、引新

1.口算、的结果并说出算式的意义。

2.列式计算:

20的是多少?6的是多少?

学生完成后,可请同学说一说这两个题为什么用乘法计算?

(导入)同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算。这是乘法意义的扩展出现的新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(板书课题)

设计意图:承上启下,以旧引新。

(二)、引入新知—探究解法

例1的教学:(屏幕展示)

学生读题,找出已知条件和要解决的问题,在理解题意的基础上指导学生画线段图。根据“我国人均耕地面积仅占世界人均耕地面积的”这个条件,应该把这条线段平均分成几份?怎样表示?根据以上数量之间的.关系,这道题应该怎样列式?根据什么?(请一学生板演,其他学生尝试自己画图,教师巡视)对照板书,把不正确的地方改正过来。

学生可能会出现下面解答方法:

解法一:世界人均耕地面积是单位“1”,把单位’“1”平均分成5份,我国人均耕地面积占了2份,先求出一份是多少平方米,再求出2份是多少平方米,即我国人均耕地面积是多少平方米。列式解答:2500÷5×2=1000(m2)

解法二:根据分数乘法的意义,我国人均耕地面积占了世界人均耕地面积的,是占了2500 m2的,所以把2500看作单位“1”,要求我国人均耕地面积是多少,就是求2500的是多少,根据一个数乘以分数的意义,所以用乘法计算:2500× =1000(m2)

设计意图:这里主要是通过学生自主探索和合作交流的方式得出,同时不给固定的思考模式,学生可以从不同的角度思考,只要合理就应该肯定。

师:同学们,看到了这个结果,跟世界人均耕地面积2500m2相比,你们有什么感受吗?该怎么办呢?能说说你们的想法吗?(适机让学生看看课本是怎么说的,以快速达到学习教育的效果)【渗透思想素质教育和增长学生的基本常识】

(三)、跟踪训练—深化知识

1、动口填一填:

⑴表示()的()

⑵表示把()看作单位“1”,平均分成()份,共有这样的()份

⑶某班有男同学25人,女同学人数是男同学人数的,这里把()的人数看作单位’1”,求女同学有多少人,就是求()的()是多少,列式是()

⑷甲的工作效率的相当于乙的工作效率,这里把( )的工作效率看作单位“1”,()的工作效率占。

2、动手做一做:课本练习四第2、3题、17页“做一做”

3、小林身高米,小强身高是小林的,小强身高多少米?

设计意图:这一环节的设计意图是反馈教学,内化知识。几道练习题配合新课设计,与例题形式类似,结合这些练习帮助学生进一步巩固解决“求一个数的几分之几是多少”这类问题的思路和方法。

(四)、归纳小结

(学生谈,教师补充,强调。)我们在解答“已知一个数,求它的几分之几是多少?”这种类型的分数乘法应用题时,首先要找准题中的单位“1”所对应的量,然后再根据分数乘法的意义列式计算

设计意图:帮助学生对本节课内容进行梳理,进一步突出重点,解决难点。

(五)拓展练习提高解题能力

1、海象的寿命大约是40年,海狮的寿命是海象的,海豹的寿命是海狮的。海豹的寿命大约是多少年?

(学生默读题目,再独立或合作交流思考)

师:这道题,谁和谁比较?如何找单位“1”?谁来说说你是如何理解分析的?

(老师适机合作,学生自主解答)

2、练习四第10题

设计意图:这个环节安排的第一个练习题是连续求一个数的几分之几是多少的题目,这类练习有利于加强学生对解决这类问题数量关系的理解和分析,培养学生分析判断和推理能力,可借助线段图帮助学生分两步分析数量关系,抓住第一步求什么,谁是表示单位“1”的量;第二步求什么,谁是表示单位“1”的量,分步列出算式,计算出结果,在分步列式的基础上,引导学生列成连乘的综合算式。第二个练习题是个思考题,供学有余力的学生做,与整数中求比一个数的几倍多几的问题思路相同。

(六)、作业布置:

另:预习课本20页至21页的内容,尝试解决下列问题:

①一桶油400千克,用去,用去多少千克?还剩多少千克?

②一桶油400千克,用去吨,用去多少千克?还剩多少千克?

五、时间安排:

复习质疑、引新(3分钟左右);引入新知—探究解法(8分钟左右);

跟踪训练—深化知识(10分钟左右);归纳小结(2分钟左右);

拓展练习提高解题能力(10分钟左右);作业布置:(7分钟左右)

六、板书设计:

例1的两种思路线段图:投影屏幕

学生板演区

以上是我对这节课的教学的看法,希望各位老师指正。谢谢!

《解决问题说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式