小数的除法教学设计

时间:2025-12-18 07:32:05
小数的除法教学设计

小数的除法教学设计

作为一位优秀的人民教师,时常要开展教学设计的准备工作,教学设计是一个系统化规划教学系统的过程。教学设计要怎么写呢?以下是小编帮大家整理的小数的除法教学设计,仅供参考,大家一起来看看吧。

小数的除法教学设计1

教学内容:课本第102页回顾与整理以及练习与应用1-6题。

教学要求:使学生进一步理解小数乘法的意义,掌握计算法则,能够比较熟练进行小数乘法、除法笔算和简单的口算;会用“四舍五入”法截取积、商是小数的近似值。

教具准备:小黑板

教学过程:

回顾与整理

(一)计算:

学生计算后集体订正。

小组讨论然后汇报交流:

1、小数乘法和整数乘法有什么相同和不同的地方?

2、计算小数乘法时,怎样确定积的小数位数?算出积后,积的小数位数不够应该怎么办?

(二)小数除法的`计算法则。

(1)提问:小数除法的计算法则是什么?怎样把除数是小数的除法转化为除数是整数的除法?商的小数点的位置怎样呢?

(2)计算:1.89÷0.5 4 7.1÷2.5 0.51÷0.22学生做完后集体订正。

二、练习与应用

1、第1题:学生独立计算,教师巡视指导。集体订正。

2、第2题:先分组完成题目,然后通过计算和比较,让学生进一步整理小数乘除法的计算方法。

3、第5题:学生独立审提题解答,教师巡视。让学生根据平均数的意义估计得数范围。

4、做第6题。主要让学生练习根据具体的问题情境合理截取商的近似值。

小结。

三、作业设计

完成整理与练习第3题和第4题。

小数的除法教学设计2

教学目标

(一)理解小数除法的意义,掌握除数是整数的小数除法的计算方法。

(二)通过对算理的理解,培养逻辑思维能力,提高计算能力。

教学重点和难点

重点:理解并掌握除数是整数的小数除法的计算方法。

难点:掌握整数除以整数不能整除时,在被除数的个位数的右边点上小数点,再在被除数的后面添上“0”继续除,直到除尽为止。

教学过程设计

(一)复习准备

1.填空:

(1)0.32里面含有32个( );

(2)1.2里面含有12个( );

(3)0.25里面含有( )个百分之一;

(4)2.4里面含有( )个十分之一;

(5)8里面含有( )个十分之一;

(6)0.15里面有( )个千分之一。

2.列竖式计算:

把2145平均分成15份,每份是多少?

2145÷15=143

3.复习整数除法的意义。

(1)一筒奶粉500克,3筒奶粉多少克?

(2)3筒奶粉1500克,1筒奶粉多少克?

(3)1筒奶粉500克,几筒奶粉1500克?

学生列式计算:

(1)500×3=1500(克);

(2)1500÷3=500(克);

(3)1500÷500=3(筒)。

比较两个除法算式与乘法算式的关系,说出整数除法的意义:

已知两个因数的积与其中的一个因数,求另一个因数的运算。

(二)学习新课

1.理解小数除法的意义。

将上面三题中的单位名称“克”改为“千克”:

(1)1筒奶粉0.5千克,3筒奶粉多少千克?

(2)3筒奶粉1.5千克,1筒奶粉多少千克?

(3)1筒奶粉0.5千克,几筒奶粉1.5千克?

学生列式计算:

(1)0.5×3=1.5(千克);

(2)1.5÷3=0.5(千克);

(3)1.5÷0.5=3(筒)。

观察思考:两个除法算式与乘法算式有什么关系?除法算式的意义是什么?

讨论后得出:小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。

练习:P14“做一做”。

2.研究除数是整数的小数除法的计算方法。

(1)学习例1:

服装小组用21.45米布做了15件短袖衫,平均每件用布多少米?

①学生列式:21.45÷15=

②学生观察这个算式与以前学习的除法有什么不同?(被除数是小数。)

③引出问题:被除数是小数,其中的小数点应如何处理呢?

④学生试做。

⑤学生讲算理。

针对错例,讨论分析原因;针对正确的`重点讲清以下几点:

21除15商1余6,余下的6除以15,不够除怎么办?(把6个一化成低一级单位表示的数,即60个十分之一,再和下一位上原有的4个十分之一合在一起,是64个十分之一,继续除。)

除到十分位余4怎么办?(把十分位上的4化成40个百分之一,并与被除数中原来百分位上的数5合在一起,是45个百分之一,继续除下去。)

商的小数点如何确定?为什么?(当除到十分位,用64个十分之一除以15,商的4表示4个十分之一,应写在十分位上,所以在个位1的右边点上小数点)

(2)练习:P15“做一做”。

68.8÷4= ?85.44÷16=

学生独立完成后,同桌互相讲算理。

小结

思考:商的小数点与什么有关?

讨论得出:商的小数点要和被除数的小数点对齐。

(3)学习例2:

永丰乡原来有拖拉机36台,现在有117台。现在拖拉机的台数是原来的多少倍?

①学生列式:117÷36;

②学生试做:

③117除以36商3余9,能不能作为结果?

不能作为结果怎么办?(继续除。)

怎样做才能继续除?(把9个一看成90个十分之一。)

直接在个位的右边添上0行吗?应该怎样添?(直接在个位的右边添0不行,如果这样9个一就变成了90个一,数的大小发生了变化。为了使数的大小不变,应在个位的右边先点上小数点后,再添上0,使9个一变成了90个十分之一。)

④学生继续做完,讲出道理。

(36除90个十分之一,商2余18。因为商表示2个十分之一,因此在商里3的右边点上小数点。18个十分之一除以36,不够商1个十分之一,再添0,化成180个百分之一,继续除。商5个百分之一,把5写在百分位上。)

教师指出:像例2这样的小数除法除到最后没有余数就叫除尽了。 ……此处隐藏6145个字……知水平、认知风格和发展趋势上也存在着差异。人的智力结构是多元的,有的人善于形象思维,有的人长于计算,有的人擅长逻辑思维,这就是学生 的实际。教学要越贴近学生的实际,就越需要学生自己来探索知识,包括发现问题,分析、解决问题。在引导学生感受算理与算法的过程中,放手让学生尝试,让学生主动、积极地参与新知识的形成过程中,并适时调动学生大胆说出自己的方法,然后让学生自己去比较方法的正确与否,简单与否。这样学生对算理与算法用自己的思维方式,既明于心又说于口。

2、遇到课堂中学生分析问题或解决问题出现错误,特别是一些受思维定势影响的“规律性错误”比如学生在处理商的小数点时受到小数加减法的影响。教师针对这种情况,是批评、简单否定还是鼓励大胆发言、各抒己见,然后让学生发现错误,验证错误?当然应该是鼓励学生大胆地发表自己的意见、看法、想法。学生对自己的方法等于进行了一次自我否定。这样对教学知识的理解就比较深刻,既知其然,又知其所以然。而且学生通过对自己提出的'问题,分析或解决的问题提出质疑,自我否定,有利于学生促进反思能力与自我监控能力。

数学教学活动应该是一个从具体问题中抽象出数学问题,并用多种数学语言分析它,用数学方法解决它,从中获得相关的知识与方法,形成良好的思维习惯和应用数学的意识,感受教学创造的乐趣,增进学生学习数学的信心,获得对数学较为全面的体验与理解。因此,学生是数学学习的主人,教师应激发学生的学习积极性,要向学生提供充分从事数学活动的机会,帮助他们掌握基本的数学知识、技能、思想、方法,获得丰富的数学活动经验。

二、教学思路

一个数除以小数”即“除数是小数的除法”是九年义务教育六年制小学数学第九册的重点知识之一。本节教材的重点是:除数是小数的除法转化成除数是整数的除法时小数点的移位法则。其关键是根据“除数、被除数同时扩大相同的倍数,商不变”的性质,把除数是小数的除法转化成除数是整数的除法。

1、 调查分析

在教学小数除法前一个星期,笔者对曾对班内十五位同学进行了一次简单的调查,(调查结果见附表)笔者认为学生存在很大的教学潜能,这些潜在的“能源”就是教学的依据,教学的资源。从上表可以得出以下结论:

(1) 学生对小数除法的基础掌握的比较巩固。

(2) 学生运用新知识解决实际问题的能力存在比较明显的差异,但不同的学生具有不同的潜力。

(3) 优秀学生与学习困难生对算理的理解在思维水平上有较大差异。但对竖式书写都不规范。

笔者认为小数除法如果按照教材按部就班教学是很不合理的,不仅浪费教学时间,而且不利于学生从整体上把握小数除法,不利于知识的系统性的形成,更不利于学生对知识的建构。因此,笔者选择了重组教材。(把例6例7与例8有机的结合在一起)

2、利用迁移,明确转化原理

理解除数是小数的除法的计算法则的算理是“商不变的性质”和“小数点位置移动引起小数大小变化的规律”,把除数是小数的除法转化成除数是整数的除法后就用“除数是整数的小数除法”计算法则进行计算。为了促进迁移,明确转化移位的原理,可设计如下环节:

(1)、小数点移动规律的复习

(2)、商不变规律的复习

(3)、移位练习

3、试做例题,掌握转化方法

明确转化原理后,让学生试算例题。在试做的基础上引导学生进行观察比较,抽象出转化时小数点的移位方法,最后概括总结出移位的法则。具体做法如下:

①.学生试做例题6例题7,并讲出每个例题小数点移位的方法。

②.学生试做例8

③.引导学生概括总结出转化时移位的方法,同时在此基础上归纳出除数是小数的除法计算法则。在得出计算法则后,还要注意强调:

(1)小数点向右移动的位数取决于除数的小数位数,而不由被除数的小数位数确定。

(2)整数除法中,两个数相除的商不会大于被除数,而在小数除法中,当除数小于1时,商反而比被除数大。

(3)要注意小数除法里余数的数值问题。对这一问题可举例说明。如:57.4÷24,要使学生懂得余数是2.2,而不是22。

4、专项训练,提高“转化”技能

除数是小数的除法,把除数转化成整数后,被除数可能出现以下情况:被除数仍是小数;被除数恰好也成整数;被除数末尾还要补“0”。针对上述情况可作专项训练:

①.竖式移位练习。练习在竖式中移动小数点位置时,要求学生把划去的小数点和移动后的小数点写清楚,新点上的小数点要点清楚,做到先划、再移、后点。这种练习小数点移位形象具体,学生所得到的印象深刻。

②.横式移位练习。练习在横式中移动小数点位置时,由于“划、移、点”只反映在头脑里,这就需要学生把转化前后的算式建立起等式,使人一目了然。

教学过程

(一)复习导入

1.要使下列各小数变成整数,必须分别把它们扩大多少倍?小数点怎样移动?

1.20.670.7250.003

2.把下面的数分别扩大10倍、100倍、1000倍是多少?

1.342,15,0.5,2.07。

3.填写下表。

根据上表,说说被除数、除数和商之间有什么变化规律。(被除数和除数同时扩大或缩小相同的倍数,商不变。)

根据商不变的性质填空,并说明理由。

(1)5628÷28=201;

(2)56280÷280=( );

(3)562800÷( )=201;

(4)562.8÷2.8=( )。

(重点强调(4)的理由。(4)式与(1)式比较,被除数、除数都缩小了10倍,所以商不变,还是201,即562.8÷2.8=5628÷28=201)

(该环节的设计意图是通过学生的讲与练,理解其转化原理是:当除数由小数变成整数时,除数扩大10倍、100倍、1000倍……被除数也应扩大同样的倍数。)

(二)探究算理 归纳法则

1.学习例6:

一根钢筋长3.6米,如果把它截成0.4米长的小段。可以截几段?

(1)学生审题列式:3.6÷0.4。

(2)揭示课题:

这个算式与我们以前学习的除法有什么不同?(除数由整数变成了小数。)

今天我们一起来研究“一个数除以小数”。(板书课题:一个数除以小数。)

(3)探究算理。

①思考:我们学习了除数是整数的小数除法,现在除数是小数该怎样计算呢?

(把除数转化成整数。)

怎样把除数转化成整数呢?

②学生试做:

板演学生做的结果,并由学生讲解:

解法1:把单位名称“米”转换成厘米来计算。

3.6米÷0.4米=36厘米÷4厘米=9(段)。

解法2:

答:可以截成9段。

讲算理:(为什么把被除数、除数分别扩大10倍?)

《小数的除法教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式