
《因数与倍数》教学设计(优秀)
作为一位杰出的老师,总不可避免地需要编写教学设计,借助教学设计可以让教学工作更加有效地进行。那么什么样的教学设计才是好的呢?以下是小编收集整理的《因数与倍数》教学设计,欢迎阅读与收藏。
《因数与倍数》教学设计1XXXX小学 XXXXX
教学内容:教材例1、例2
教学目标
1.知识与技能:让学生初步理解因数和倍数的概念,掌握找因数和倍数的方法。学会用列举法找一个数的因数和倍数。
2.过程与方法:借助直观图,先引导学生观察后列出乘法算式,最后结合乘法算式来理解因数与倍数的概念。
3.情感、态度与价值观:理解因数和倍数的意义能及两者之间相互依存的关系。
教学重点:理解因数和倍数的概念。
教学难点:掌握求一个数的因数和倍数的方法。
教学方法:启发式教学法、指导自主学习法。
教学准备:多媒体。
教学过程:
一、新课导入:
1.出示教材第5页例1。
12÷2=6 9÷5=1.830÷6=5 2÷3=0.6
26÷8=3.5 19÷7≈2.7120÷10=2 21÷21=163÷9=7
(1)观察: 引导观察例1中的算式,你发现了什么?(都是除法算式)
(2)分类:你能把上面的除法算式分类吗?
学生分类后,教师组织学生交流,引导学生根据是否整除分为以下两类
第一类 12÷2=620÷10=2 30÷6=5 21÷21=1 63÷9=7 第二类 9÷5=1.8 19÷7≈2.71 2÷3=0.626÷8=3.25
2.引入课题。这节课我们就来学习有关数的整除的相关知识。(板书课题:因数和倍数)
二、探索新知:
(一)、明确因数与倍数的意义。(教学例1)
1. 教师引导。教师指出:在整数除法中,如果商是整数而没有余数,我们
就说被除数是除数和商的倍数,除数和商是被除数的因数。例如:12÷2=6,我们说12是2和6的倍数,2和6是12的因数。
2. 学生尝试。
教师让学生说一说第一类的每个算式中,谁是谁的因数?谁是谁的倍数?先同桌互相说一说,再组织全班交流。
3. 深化认识。师:通过刚才的说一说活动,你发现了什么?
引导学生体会:因数和倍数虽是两个不同的概念,但又是相互依存的,二者不能单独存在。我们不能说谁是因数,谁是倍数,而应该说谁是谁的因数,谁是谁的倍数。例如,30÷6=5,30是6和5的倍数,6和5是30的因数。教师强调,并让学生注意:为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括O)。
4. 即时练习。指导学生完成教材第5页“做一做”。
小结:如果a÷b =c(a,b,c均是不为0的自然数),那么a就是b和c的倍数,b和c是a的因数。因数和倍数是相互依存的。
(二)、探索找一个数因数的方法。(教学例2)
1. 出示例2:18的因数有哪几个?
(1) 学生独立思考。
师:根据因数和倍数的意义,想一想18除以哪些整数的结果是整数。
18÷1=18,l和18是18的因数;18÷2=9, 2和9是18的因数;18÷3=6, 3和6是18的因数。引导学生把18的因数按从小到大的顺序排列,每两个因数之间用逗号隔开,全部写完后用句号结束,即18的因数有:1,2,3,6,9 ,18。
(2)小组合作交流。交流时教师要让学生说明找的方法,引导学生认识:只要想18除以哪些整数的结果是整数,并且要从1开始,一对一对地找,避免遗漏。如果学生还有其他想法,只要合理,教师都应给予肯定。
(3)采用集合图的方法。
教师指出也可用右面的集合图来表示18的全部因数。明确:用图示法表示18的因数时,先画一个椭圆,在椭圆的上面写上“18的因数”,再把18的因数按从小到大的顺序有规律地写在椭圆里,每两个因数之间也用逗号隔开,全部写完后不加句号。
(4)练习。让学生找出30的因数和36的因数,并组织交流。
30的因数有1,2,3,5,6,10,15,30。
36的因数有1,2,3,4,6,9,12,18,36。
三、巩固练习
指导学生完成教材“练习二”第1、6题。学生独立完成全部练习后教师组织学生进行集体证正。
四、课堂小结
师:通过本节课的学习,你有什么收获?
板书设计:
因数和倍数
12÷2=6 12是2和6的倍数
2和6是12的因数 18的因数有1,2,3,6,9,18。
一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
作业:教材第7页“练习二”第2(1)题。
第二单元:因数和倍数
第二课时:因数与倍数(2)
教学内容:教材P6例3及练习二第2(1)、3~8题。
教学目标:
知识与技能:通过学习,使学生能自主探究,找出求一个数的倍数的方法。 过程与方法:结合具体情境,使学生进一步认识自然数之间存在因数和倍数的关系,掌握求一个数的因数和倍数的方法。
情感、态度与价值观:初步学会从数学的角度提出问题、理解问题,并能用所学知识解决问题。在解决问题的过程中,培养学生概括、分析和比较的能力,使学生体会数学知识的内在联系。
教学重点:掌握求一个数的倍数的方法。
教学难点:理解因数和倍数两者之间的关系。
教学方法:启发式教学法、指导自主学习法。
教学准备:多媒体。
教学过程:
一、复习导入
10,28,42的因数有哪些?你是用什么方法找出这些数的因数个数的?一个数的因数中,最大的是几?最小的是几?
二、探索新知
1.探索找倍数的.方法。(教学例3)
出示例3:2的倍数有哪些?
师:你会找2的倍数吗?给你们1分钟的时间,看谁写得又对、又快、又多!准备好了吗?开始!
师:时间到,你写了多少个2的倍数?生1:15个。生2:24个。
师:大家都是用的什么方法呢?
生1:我是用乘法口诀,一二得二,二二得四……这样写下去的。
生2:我也是用乘法,用2去乘1、乘2……
师:哪些同学也是用乘法做的?
师:你们都是用2去乘一个数,所得的积就是2的倍数。还有不同的方法吗?
……此处隐藏18455个字……研究的数都是什么数?”(整数)。谁能说说10的因数,你是怎么想的?
今天,我和大家一道来继续共同探讨“因数与倍数”
二、合作交流、共探新知。
b、探究找一个数的因数的方法(谈话法、比较法、归纳法)。
1、谁来说说18的因数有哪些?
学生预设:有的学生可能会说还有6*3,9*2,18*1等,出现这种情况时可以冷一下,让学生想一想这样写的话会出现什么情况,最后让学生明白一个数的因数是不能重复的。
d、介绍写一个数因数的方法。
可以用一串数字表示;也可以用集合圈的方法表示。
说一说:
18的因数共有几个?
它最小的因数是几?
最大的因数是几?
2、做一做(在做这些练习时应放手让学生去做,相信学生的知识迁移与消化新知的能力)。
a、30的因数有哪些,你是怎么想的?
b、36的因数有几个?你是怎么想的?为什么6*6=36,这里只写一个因数?
d、让学生讨论:你从中发现了“一个数的因数”有什么相同的地方吗?
学生总结:
板书:
一个数最小的因数是1;
最大的因数是它本身;
轻松一下:
我们来了解一点小知识:完全数,什么叫完全数呢?就是一个数所有的因数中,把除了本身以外的因数加起来,所得的和恰好是这个数本身,那这样的数我们就叫它完全数,也叫完美数,比如6~~(学生读课本14页完全数的相关知识)。
b、探究找一个数的倍数的方法(谈话法、比较法、归纳法)。
因为有了前面探究找一个数因数的方法,在这一环节更可大胆让学生自己去想,去说,去发现,去归纳。教师只要适当做点组织和引导工作就行。
过渡:大家都很棒!这么快就找出了一个数的因数并总结好了它的规律,现在杨老师想放开手来让大家自己来学习下面的知识:找一个数的倍数。
a、2的倍数有哪些?你是怎么想的?从1开始做手势:1*2=2,2*2=4,2*3=6,一倍一倍地往上递加。
b、那5的倍数有哪些?按从小到大的顺序至少写出5个来,看谁写得又快又好。
c、对比“一个数的因数”的规律,学生自由讨论:一个数的倍数有什么规律呢?
(到这一环节就无需再提问了,要相信学生能够在类比中找到学习的方法)。
学生总结:
板书:
一个数最小的倍数是它本身;
没有最大的倍数;
倍数的个数是无限的。
(哦,大家这么聪明啊,不用老师教都会了,看来你们真的是太棒了,这也说明学习要学得轻松就一定要掌握~~方法!)。
c、看样子大家都满怀信心了,那老师就用黑板上的两个例题来考考大家,看大家的观察能力是不是真的好厉害。
你能从中找出既是18的因数又是2的倍数的数吗?(计时开始:10,9,8,~~~)。
学生完成后表扬:哇,好厉害!
三、深化练习,巩固新知。
1、做练习二的第3题。
在题中出示的数字里分别找出8的倍数和9的倍数。
注意“公倍数”概念的初步渗透。
3、做练习二的第6题。
四、通过这堂课的学习,你有什么收获?
五、布置作业:
六、结束全课:
请学号是2的倍数的同学起立,你们先离场,不是2的倍数的同学后离场。
18=1×18。
18=2×9。
18=3×6。
《因数与倍数》教学设计15复习内容:公因数和公倍数。
复习目标:通过复习,能又快又准地找出两个数的最大公因数和最小公倍数,并能运用所学知识解决实际问题。
复习重点:又快又准的找出两个数的最大公因数和最小公倍数。
复习难点:运用所学知识熟练的解决生活中的数学问题。
复习过程:
一、谈话引出课题
1、这一单元,我们学习了什么?(生答)
今天我们一起复习公因数和公倍数。(揭题)
2、现在,你知道了哪些有关公因数和公倍数的知识?(小组讨论→全班交流)
二、解答实际问题
1、我们已经学会了好几种求最大公因数和最小公倍数的方法,你最喜欢哪种方法,为什么?(又快又准)
下面我们就用短除法求最大公因数和最小公倍数(24和36)。
2、谈话:有些最大公因数和最小公倍数一眼就能看出,你想试一试吗?
找出每组数的最大公因数和最小公倍数。
8和16()27和9()
13和39()51和17()
问:你们为什么这么快就能找出它们的最大公因数和最小公倍数?
3、找出下面每组数的最大公因数和最小公倍数
16和1()5和7()
11和8()9和10()
问:通过练习,我们又发现了什么?
4、你能说出下面每个分数中分子与分母的最大公因数吗?
14/21()35/45()22/33()80/90()
5、说一说每组分数中两个分母的最小公倍数。
2/3和4/73/5和9/105/9和5/67/8和11/12
6、判断:
1、3和5没有公因数。()
2、a = 4b(a、b都是整数)a和b的最大公因数是b。()
3、30是3和10的倍数。()
4、两个数的`最小公倍数一定比这两个数都大。()
5、如果两个数的最大公因数是1,那么最小公倍数一定是它们的乘积。()
三、解决生活问题
谈话:我们学习数学,就是为了用数学方法解决生活中的问题,现在老师带来了一些生活中的数学问题,大家想挑战吗?
1、长途汽车站每隔8分钟向a地发一辆车,每隔10分钟向b地发一辆车,这两趟车早上7:00同时发车,第二次同时发车是什么时候?
问:解决这个问题,实际上就是求什么?
2、一篮鸡蛋,5个5个地数,6个6个地数,都少了2个,这篮鸡蛋至少多少个?
3、有一种长方形地砖,长6dm,宽4dm,至少取多少块才能拼成一个正方形?
4、有两根长分别是32cm和40cm的木条,把它们锯成同样长的小段(每小段都是整厘米数),并没有剩余,每小段最长是多少?
问:读了这道题后,你认为哪些地方要引起大家注意?
5、把一块长20cm宽15cm的长方形红布,剪成边长是整厘米数且面积尽可能大的相等的正方形,一共可以剪多少个?
6、思考题:
李老师把25本练习本和15支铅笔,分别平均分给一个组的同学,结果练习本多了1本,铅笔少了1支,你知道这组最多有几个同学吗?
四、交流新的收获?
五、作业:完成《补充习题》



