有理数的教案

时间:2026-01-28 22:08:08
有理数的教案

有理数的教案

作为一名老师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。快来参考教案是怎么写的吧!下面是小编为大家整理的有理数的教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

有理数的教案1

教学目标

1.进一步熟练掌握有理数的混合运算,并会用运算律简化运算;

2.培养学生的运算能力及综合运用知识解决问题的能力.

教学重点和难点

重点:有理数的运算顺序和运算律的运用.

难点:灵活运用运算律及符号的确定.

课堂教学过程设计

一、从学生原有认知结构提出问题

1.叙述有理数的运算顺序.

2.三分钟小测试

计算下列各题(只要求直接写出答案):

(1)32-(-2)2;(2)-32-(-2)2;(3) 32-22;(4)32×(-2)2;

(5)32÷(-2)2;(6)-22+(-3)2;(7)-22-(-3)2;(8)-22×(-3)2;

(9)-22÷(-3)2;(10)-(-3)2·(-2)3;(11)(-2)4÷(-1);

二、讲授新课

例1 当a=-3,b=-5,c=4时,求下列代数式的值:

(1)(a+b)2; (2)a2-b2+c2;

(3)(-a+b-c)2; (4) a2+2ab+b2.

解:(1) (a+b)2

=(-3-5)2 (省略加号,是代数和)

=(-8)2=64; (注意符号)

(2) a2-b2+c2

=(-3)2-(-5)2+42 (让学生读一读)

=9-25+16 (注意-(-5)2的符号)

=0;

(3) (-a+b-c)2

=[-(-3)+(-5)-4]2 (注意符号)

=(3-5-4)2=36;

(4)a2+2ab+b2

=(-3)2+2(-3)(-5)+(-5)2

=9+30+25=64.

分析:此题是有理数的混合运算,有小括号可以先做小括号内的,

=1。02+6。25-12=-4。73.

在有理数混合运算中,先算乘方,再算乘除.乘除运算在一起时,统一化成乘法往往可以约分而使运算简化;遇到带分数通分时,可以写

例4 已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,试求 x2-(a+b+cd)x+(a+b)1995+(-cd)1995值。

解:由题意,得a+b=0,cd=1,|x|=2,x=2或-2.

所以 x2-(a+b+cd)x+(a+b)1995+(-cd)1995

=x2-x-1.

当x=2时,原式=x2-x-1=4-2-1=1;

当x=-2时,原式=x2-x-1=4-(-2)-1=5.

三、课堂练习

1.当a=-6,b=-4,c=10时,求下列代数式的值:

2.判断下列各式是否成立(其中a是有理数,a≠0):

(1)a2+1>0; (2)1-a2<0;

四、作业

1.根据下列条件分别求a3-b3与(a-b)·(a2+ab+b2)的.值:

2.当a=-5。4,b=6,c=48,d=-1。2时,求下列代数式的值:

3.计算:

4.按要求列出算式,并求出结果.

(2)-64的绝对值的相反数与-2的平方的差.

5*.如果|ab-2|+(b-1)2=0,试求

课堂教学设计说明

1.课前三分钟小测试中的题目,运算步骤不太多,着重考查学生运算法则、运算顺序和运算符号,三分钟内正确做完15题可算达标,否则在课后宜补充这一类训练.

2.学生完成巩固练习第1题以后,教师可引导学生发现(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2,使学生做题目的过程变成获取新知识的重要途径.

有理数的教案2

教学目标:

1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。

2.已知一个数,会求出它的正整数指数幂,渗透转化思想。

3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。

教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。

教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。

教学过程设计:

(一)创设情境,导入新课

提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?

a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)

(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?

1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.

(二)合作交流,解读探究

一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。

求n个相同因数的`积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂。

说明:(1)举例94来说明概念及读法。

(2)一个数可以看作这个数本身的一次方,通常省略指数1不写。

(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。

(4)乘方是一种运算,幂是乘方运算的结果。

(三)应用迁移,巩固提高

【例1】(1)(-4)3;(2)(-2)4;(3)-24.

点拨:(1)计算时仍然是要先确定符号,再确定绝对值。

(2)注意(-2)4与-24的区别。

根据有理数的乘法法则得出有理数乘方的符号规律:

负数的奇次幂是负数,负数的偶次幂是正数;

正数的任何次幂都是正数,0的任何正整数次幂都是0.

【例2】计算:

(1)()3;     (2)(-)3;

(3)(-)4; (4)-;

(5)-22×(-3)2; (6)-22+(-3)2. ……此处隐藏19333个字……的积极性。使学生在一种比较活跃的氛围中,解决各种问题。

4, 归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。

以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。

要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。

2、 就第一章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分一-有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。

从以上两点不难看出它的地位和作用都是很重要的。

接下来,介绍本节课的教学目标、重点和难点。

教学大纲是我们确定教学目标,重点和难点的依据。教学大纲规定,在有理数的加法的第一节要使学生理解有理数加法的意义,理解有理数的加法法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标。1、知识目标是:“(1)理解有理数加法的意义;(2)理解并掌握有理数加法的法则;(3)应用有理数加法法则进行准确运算;(4)渗透数形结合的思想。2能力目标是:(1)培养学生准确运算的能力;(2)培养学生归纳总结知识的能力;3、德育目标是;(1)渗透由特殊到一般的辩证唯物主义思想:(2)培养学生严谨的思维品质。有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是有理数加法法则的理解。

以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。

有理数的教案14

【教学目标】

一、知识与能力

较熟练地进行有理数的乘法运算,发展观察,归纳,猜想,验证等能力。

二、过程与方法

经历探索有理数乘法法则的过程,灵活运用归纳,猜想,化归等掌握新知识。

三、情感、态度、价值观

注意学生的学习积极性、主动性的调动,增强学生学习数学的自信心。

【教学重难点】

教学重点:会进行有理数的乘法运算

教学难点:有理数法则的推导

【教学准备】

1.学生每一人备一只计算机;

2.投影仪、幻灯片

【预习导学】

预习课本,并完成填空部分

【教学过程】

一、创设情景,谈话导入

我们已经熟悉正数及0的乘法运算,引入负数以后,怎样进行有理数的乘法运算呢?

二、精讲点拨,质疑问难

1.幻灯演示课本引例,启发,引导学生回答问题并列出算式,总结两数相乘积的符号:

正数乘正数积为____数,负数乘负数积为____数。

正数乘负数积为____数,负数乘正数积为____数。

乘积的绝对值等于各乘数绝对值的

2.教师引导学生总结法则内容:

同号两数相乘,得正,并把绝对值相乘

异号两数相乘,得负,并把绝对值相乘

0与任何数相乘,结果是_________

有理数相乘的运算顺序是先确定积的_______,再确定积的_________

2.学生分组讨论:观察、思考部分,组内推荐一名同学回答、观察、思考部分的问题,教师点评。

引导学生总结:

(1)几个有理数相乘,如果其中有因数为0,则积等于____

(2)几个不是0的数相乘,负因数的个数是______时,积是正数,负因数的'个数是_______时,积是负数

(3)几个有理数相乘,先确定积的______,后把它们按顺序依次___________

三、课堂活动,强化训练

例1.计算:

(1)(—3)×9×(-2)

引导学生总结:

(1)乘积是1的两个数互为倒数(2)举几个互为倒数的例子

学生练习

例2.用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座高峰,每登高1Km气温的变化量为-6C,攀登3Km后,气温有什么变化?

有理数的教案15

教学目标

1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;

2.通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;

3.通过加法运算练习,培养学生的运算能力。

教学建议

(一)重点、难点分析

本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算.

由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.

(二)知识结构

(三)教法建议

1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.

2.关于“去括号法则”,只要学生了解,并不要求追究所以然.

3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的.和式。这时,称这个和式为代数和。再例如

-3-4表示-3、-4两数的代数和,

-4+3表示-4、+3两数的代数和,

3+4表示3和+4的代数和

等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

4.先把正数与负数分别相加,可以使运算简便。

5.在交换加数的位置时,要连同前面的符号一起交换。如

12-5+7应变成12+7-5,而不能变成12-7+5。

《有理数的教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式